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Abstract
The Casimir–Polder and van der Waals interactions between an atom and a flat
cavity wall are investigated under the influence of real conditions including
the dynamic polarizability of the atom, actual conductivity of the wall material
and nonzero temperature of the wall. The cases of different atoms near metal
and dielectric walls are considered. It is shown that to obtain accurate results
for the atom–wall interaction at short separations, one should use the complete
tabulated optical data for the complex refractive index of the wall material and
the accurate dynamic polarizability of an atom. At relatively large separations
in the case of a metal wall, one may use the plasma model dielectric function
to describe the dielectric properties of the wall material. The obtained results
are important for the theoretical interpretation of experiments on quantum
reflection and Bose–Einstein condensation.

PACS numbers: 34.50.Dy, 12.20.Ds, 34.20.Cf

Recently, the study of dispersion interactions between an atom and a wall has assumed a new
significance in connection with Bose–Einstein condensates of ultracold atoms [1–3]. The
van der Waals and Casimir–Polder forces acting between dilute individual atoms, confined
in a magnetic trap, and a wall may influence the stability of a condensate and the effective
size of the trap [3]. As was shown in [4], the study of the collective oscillations of the
Bose–Einstein condensate can provide a sensitive test of dispersion forces. This prediction
was later supported both theoretically [5] and experimentally [6]. Dispersion interaction
between an atom and a wall is also taken into account in quantum reflection of cold atoms on a
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surface [7] and in dynamical interaction effects of fast atoms and molecules with solid surfaces
[8]. Currently, the new asymptotic behaviour of the surface–atom interaction out of thermal
equilibrium has been advanced [9]. Below we use the generic name ‘Casimir–Polder’ for all
atom–wall interactions of a dispersive nature because the pure nonretarded regime occurs at
separations from zero to a few nanometres only.

The theoretical basis for the description of the Casimir–Polder interaction between an
atom at a separation a and a flat wall at temperature T in thermal equilibrium is given by the
Lifshitz-type formula for the free energy [10–12]

F(a, T ) = −kBT

8a3

{
2α(0)f (0) +

∞∑
l=1

α(iζlωc)

∫ ∞

ζl

dy e−y
[(

2y2 − ζ 2
l

)
r‖(ζl, y)

+ ζ 2
l r⊥(ζl, y)

]}
. (1)

Here α(ω) is the atomic dynamic polarizability, kB is the Boltzmann constant, ζl =
4πlkBT a/(h̄c) are the dimensionless Matsubara frequencies, ωc = c/(2a) is the characteristic
frequency of the Casimir–Polder interaction, and the reflection coefficients for two independent
polarizations of an electromagnetic field are defined as
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where εl ≡ ε(iζlωc) is the permittivity of the wall material computed at imaginary Matsubara
frequencies. For dielectrics f (0) = [ε(0) − 1]/[ε(0) + 1] and for metals f (0) = 1.

In most calculations of the atom–wall interaction previously performed only the limiting
cases of large and short separations were considered. The polarizability of the atom was taken
into account in the static approximation [13] or in the framework of the single-oscillator model
[14], and the dielectric properties of the wall material were oversimplified (e.g., by considering
a metal wall to be made of ideal metal). The present experimental situation requires precise
(1% accuracy) computations of the Casimir–Polder interaction in a wide separation range
from about 3 nm (where the Lifshitz formula becomes applicable) to 10 µm. In this paper, we
present the results of such computations clarifying the atomic and material properties which
are essential to attain the required accuracy.

We have performed numerical computations of the free energy (1), (2) for metastable
He∗, Na and Cs atoms in the ground state located near the metal (Au), semiconductor (Si) and
dielectric (SiO2) walls at T = 300 K. (The modification on account of walls in the spontaneous
emission of Rydberg atoms, obtained, e.g., by means of two lasers, is discussed in [15, 16].
However, thermal quanta at T = 300 K are too small to excite an atom from the ground state
to some other states.) Three different descriptions for the dielectric properties of a metal were
used: (i) as an ideal metal, (ii) using the dielectric permittivity from the free-electron plasma
model ε(iξ) = 1 + ω2

p

/
ξ 2 (where ωp is the plasma frequency) and (iii) with ε(iξ) obtained

by means of a dispersion relation using the tabulated optical data for the complex index of
refraction [17]. The dielectric permittivity of a semiconductor or dielectric was described
either by their static permittivity ε(0) or by means of their tabulated optical data and the
dispersion relation. The polarizability of an atom was represented by its static value α(0) or
by means of the highly accurate N-oscillator model [18]

α(iζlωc) = e2
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ω2
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cζ
2
l

, (3)
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Table 1. Free energy F (in J) of the Casimir–Polder interaction between a He∗ atom and Au
and SiO2 walls (columns (a)) and correction factors to it at different separations a. In columns
labelled (a) the material of the wall and the atom are described by the optical tabulated data and
accurate dynamic polarizability, respectively. In columns labelled (b) the metal is an ideal one and
the dielectric permittivity of SiO2 is static; the dynamic polarizability of the atom is the accurate
one. In columns labelled (c) the wall materials are described by the tabulated optical data, and the
dynamic polarizability of the atom is given by the single-oscillator model. In column (d) the metal
is described by the plasma model and the dynamic polarizability of the atom is accurate.

He∗ near an Au wall He∗ near a SiO2 wall

a (nm) (a) (b) (c) (d) (a) (b) (c)

3 3.80 × 10−23 1.16 0.956 0.937 1.61 × 10−23 1.78 0.949
10 9.95 × 10−25 1.14 0.961 0.948 4.18 × 10−25 1.73 0.958
20 1.18 × 10−25 1.14 0.973 0.959 4.94 × 10−26 1.68 0.967
50 6.62 × 10−27 1.13 0.984 0.976 2.71 × 10−27 1.64 0.983

100 6.98 × 10−28 1.11 0.991 0.981 2.76 × 10−28 1.60 0.993
150 1.77 × 10−28 1.10 0.997 0.992 6.93 × 10−29 1.57 0.994

where m and e are the electron mass and charge, f0n and ω0n are the oscillator strength and
frequency of the nth excited-state to ground-state transition, respectively. A more simplified
single-oscillator model (equation (3) with N = 1) was also used. Computations show that at
short separations (from 3 nm to about 150 nm), it is necessary to use the complete tabulated
optical data for the complex index of refraction in order to find the most accurate results.
For the dynamic polarizability of an atom, at shortest separations the highly accurate data for
it should be used. With increasing atom–wall distance up to several tens of nanometres the
single-oscillator model becomes applicable. These calculations are illustrated in table 1 by
the example of a metastable He∗ atom near Au and SiO2 walls (the analogous results for Na
and Cs atoms near Au, Si and SiO2 walls can be found in [11, 12]). The tabulated optical data
for Au and SiO2 were taken from [19], and the values of Au plasma frequency and SiO2 static
permittivity are ωp = 9.0 eV = 1.37×1016 rad s−1 and ε(0) = 3.84. The accurate data for the
dynamic polarizability of metastable He∗ (with a relative error of order 10−6) were taken from
[20] and the parameters of a single-oscillator model from [21] were used. As seen in table 1,
the use of the ideal metal or the static dielectric permittivity approximations leads to errors
up to 16% for metal and 78% for dielectric. These errors slowly decrease with increasing
separation between the atom and the wall. The plasma model is a better approximation than
the ideal metal approximation. It results in errors of about 5% at the shortest separations and
becomes sufficiently exact when the separation approaches 150 nm. The use of the static
atomic polarizability would result in much greater errors and for this reason it is omitted from
table 1. At large separations, from 150 nm to a few micrometres, the effects of the atomic
dynamic polarizability play a more important role than the effects of the finite conductivity of
the metal. The single-oscillator model, however, is sufficient to achieve the required accuracy.
The dielectric properties of a metal can be approximated by the plasma model. For dielectrics
and semiconductors both tabulated optical data and the Ninham–Parsegian representation for
the dielectric permittivity [22] are suitable for obtaining accurate results. For sufficiently
large separations one can use the static dielectric permittivity of the wall. We illustrate these
features using the example of a He∗ atom near an Au wall. Due to the strongly nonmonotonic
dependence of the free energy on separation, we plot along the vertical axis the ratio of the
free energy to the Casimir–Polder energy E(a) = −3h̄cα(0)/(8πa4) of an atom near a wall
made of ideal metal at T = 0. As is seen from figure 1, at separations a > (4 − 5) µm all
approaches lead to approximately equal values of the free energy.
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Figure 1. Normalized Casimir–Polder free energy for a metastable He∗ atom near an Au wall
versus separation. Lines 1, 2 take into account the dynamic polarizability of an atom (in the single-
oscillator model) and describe the metal by the plasma model or as an ideal one, respectively.
Lines 3, 4 describe the atom by the static polarizability and metal in analogy with lines 1, 2.

To conclude, results such as those presented in the columns labelled (a) in table 1 and by
line 1 in figure 1 can be used in the interpretation of precision experiments on atom–surface
interactions.

Acknowledgments

ITAMP is supported in part by a grant from the NSF to the Smithsonian Institution and
Harvard University. VMM and GLK were partially supported by FAPERJ (process numbers
E-26/170.132 and 170.409/2004) and by the Russian Foundation for Basic Research (grant
no. 05-08-18119a).

References

[1] Harber D M, McGuirk J M, Obrecht J M and Cornell E A 2003 J. Low Temp. Phys. 133 229
[2] Leanhardt A E, Shin Y, Chikkatur A P, Kielpinski D, Ketterle W and Pritchard D E 2003 Phys. Rev.

Lett. 90 100404
[3] Lin Y, Teper I, Chin C and Vuletić V 2004 Phys. Rev. Lett. 92 050404
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[21] Brühl R, Fouquet P, Grisenti R E, Toennies J P, Hegerfeldt G C, Köhler T, Stoll M and Walter C 2002 Europhys.
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